
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-17, NC). 8, AUGUST 1969 591

Dominant Pole Synthesis of Transmission

Line Networks

SOLAIMANUL MAHDI, STUDENT MEMBER,

Abstracf—’llds paper deseribes a procedure for synthesizing trans-

mission networks which are interconnections of uniform line elements. An

iterative, digital computer algorithm is developed which achieves a dom-

inant pole synthesis. The line lengths and the characteristic impedances

are controlled individually, which gives design flexibility not found in syn-

thesis procedures based on Richards’ transformation. Thus, the charac-

teristic impedances may be restricted by upper and lower bounds when

there is no restriction on the line lengths. The procedure is detailed for a

TEM mode structure of alternating open stubs and connecting lines. The

method uses a Newton-Raphson iterative scheme to adjust the charac-

teristic impedances and lengths of the transmission lines for a prescribed

set of dominant transmission poles. By controlling the stub line lengths

and the dominant pole positions, the principsd transmission zeros and

bounded characteristic impedances can be achieved simultaneously,

I. INTRODUCTION

N

ETWORK functions that characterize a lossless

transmission line section can be expressed in terms

of a single function tanh (s/4~0), where s= u+j~ is

the complex frequency, and ~0 is the frequency, in hertz, at

which the length of the transmission line element is a quar-

ter wavelength. Using the transformation k =.2 +jfl = tanh

(s/4~o) Richards [1] showed that distributed circuits com-

posed of lumped resistors and equal length transmission line

elements can be treated exactly as lumped networks in the

new variable k. Thus all the power of conventional lumped

parameter synthesis techniques is made available to the de-

signers of distributed parameter networks.

Richards’ transformation has been successfully employed

for the analytical design of distributed networks by Ozaki

and Ishii [2], Horton and Wenzel [3], Wenzel [4], and many

others. While this transformation has been a powerful tool

for the analytic design of distributed structures, techniques

based on it have certain weaknesses. Foremost among these

is the requirement that all the transmission line elements

have the same electrical length. One-half of the available

degrees of freedom are being fixed for analytic convenience,

and all of the design control rests in the characteristic im-

pedances of the transmission line elements. This can lead to

practical difficulty since the range of feasible characteristic

impedance is much less than the element value range avail-

able with lumped inductances and capacitances.
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Fig. 1. General structure of the transmission line networks considered
in this paper. The length /j and the characteristic impedance Zj
characterize the jth transmission line.

A microwave network structure with no restriction on line

lengths has been considered by Kinariwala [5]. He has de-

rived necessary and sufficient condition for a multivariable

function to be the input impedance of a circuit made up of

sections of unequal length transmission lines in cascade and

terminated in a lumped resistor. He also gives a procedure

for the synthesis of such a cascaded structure from an input

impedance satisfying the given conditions. The approxima-

tion problem for such a cascade network is still unsolved, as

are the synthesis and approximation methods for a more

general structure.

Although analytic design methods for distributed net-

works without the a priori restriction of commensurable line

lengths are yet to be found, the high-speed computational

capability of a large digital computer makes feasible the

iterative design of such structures.

This paper describes a dominant pole synthesis procedure

applicable to a distributed TEM mode network having the

physical structure indicated in Fig. 1; in this procedure the

lower and upper bounds of the characteristic impedances are

specified, but there is no restriction on line lengths. The

method utilizes a Newton-Raphson iterative scheme to ad-

just the characteristic impedances and lengths of the trans-

mission lines for a prescribed set of dominant transmission

poles. If the poles are chosen to give a low-pass characteristic

when all of the transmission zeros are at infinity, the finite

transmission zeros produced by the stubs in F~g. 1 may sub-

stantially modify the transfer characteristic realized. By

controlling the stub line lengths and modifying the dominant

pole positions, improved transmission characteristics and

bounded characteristic impedances can be achieved simul-

taneously.

11. THE ANALYTIC PROBLEM

The characteristic impedances and the lengths of the

transmission line elements that realize a prescribed set of

transmission poles are the solution of a system of nonlinear

equations. In this section, this system of nonlinear equations

is derived.



592 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1969

The general circuit parameter matrices of a connecting

line element and an open stub element are respectively given

by

r sl sl
cosh — 2 Sinh — 1

and

[--

1

1

.2

1
v v

1 d 1sl ‘— sinh — cosh —
2 v v

o 1sl “
cosh —

v

(1)

(2)

In matrices (1) and (2), 1, z, and u denote, respectively, the

transmission line length, the characteristic impedance, and

the velocity of propagation. The general circuit parameter

matrix for the whole circuit in Fig. 1 is the product of indi-

vidual matrices representing each circuit element, which may

be written

Re [C~’(11, . . ., l~; ZI, “ “ “ ,.zfi; f)] = O, (5)

Im [C~’(11, . 0 ., l~; z1, . 0 . ,z~; $)J = O. (6)

If g is real, CT’ is real, and in that case (4) is a real equation.

A complex pole and its conjugate result in two equations,

and a real pole results in one equation. Realization of n

transmission poles at prescribed locations s;, i= 1, 2, . . ., n

requires that

CT’(11, . . ., 1.;21, . . ., %;s2) = o;
(7)

i=l,2, . . ..n.

Following the procedure outlined above the system of equa-

tions (7) may be written in the form

f,(l,, ””, lm;z I,oco, z~)=O; ,.. .,n. (8);=l

The functions~; are the real and imaginary parts of CT’ at

the complex poles and CT’ itself at the real poles. Assuming

that the prescribed set of n pole locations are given by

S[, s~ = .S1*; S3, S4=S3*; ...;

.-— - *.
7 s~(real),S,,_?, *-n_l — a. —.%

(8) can be explicitly expressed as

1
812

z sinh —
v

Slz
cosh —

v

1- -1 1- -1

Since the transfer impedance is given by

1 ,=1?7...[Cosh(ill
21’=ii= >

CT’

transmission poles are the zeros of CT’. To emphasize that

CT’ is a function of lengths of the line elements, (11, & . . .,

L), the characteristic impedances of the line elements,

(z,, z,, . . . . z.), and the complex frequency s, it can be

written as

CT’(11, ~ . ., ln; 21, . . ., 2,,; s).

If& (and its conjugate) is a complex transmission pole of the

network in Fig. 1, one gets

rT’(1,, . . ., Zn;z,, ~. . ,2,,; ,$) = (). (4)

CT’ being a complex-valued function, (4) can be separated

into two real equations:

(3)

(9)

o
0

III. CALCULATION OF REAL AND IMAGINARY

PARTS OF CT’

CT’ may be calculated by multiplying the component ma-

trices in (3). Another way of finding CT’ is calculating the

input impedance at the port 1- 1‘ in Fig. 3, since zin = A~’/C~’.

Evaluation of zi. proceeds in the following way.

The input impedance of a transmission line terminated in

an impedance (-E+jF’)/(G+jH) as indicated in Fig. 2(a), can
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Fig. 2. (a) A transmission line terminated by the impedance zi.~–l Fig. 3. Input impedance z,. looking into the port 1– 1‘ is determined

=(E+jF)/(G+jH). (b) An impedance Z,.J-l =(E+jF)/(G+jH)
recursively. Computation starts at G,, then proceeds towards the

shunted by an open stub. left as z~(j=l, 2, . . . , n) are found using (10) or (11), until port
1– 1’ is reached.

be manipulated into the form

(E+jF) Cosh (slj/v) + (G+jH)~j sinh (slj/V)
Zinf= ~j

(G+jH)z, cosh (sl,/v) + (E+jF) sinh (~lj/V) “

The input impedance of a one port shunted by an

stub as depicted in Fig. 2(b) is found to be

(E+jF)~j cosh (.slj/v)

‘i’”= (G+jH)z, cosh (sZj/v) + (E+jF) sinh (sl,/v) “

If for the connecting line it is assumed that

(lo)
Z+m,

1/11 --+ o,

open and

d/u d L,

(11) the matrix (13) in the finite frequency-plane approaches the

limiting value

(15)

Starting with E= l/Gl, F= O, G= 1, H= O, Zinl, Zinz, . . .,
.zinmare computed recursively by using whichever of the

expressions (10) or (11) is applicable as shown in Fig. 3.

Finally zi. is given by

1
Zi. =

Gz + (1/~i.”) “
(12)

Evaluation of CT’ by first finding zi. from (12) involves

determination of zin~(j= 1, 2, . . ., n) using either (10) or

(1 1). Each of these zi.~ is expressed by four real numbers. In

the computer program that was written to solve the system

of equations (9), CT’ was found from the denominator of zi.

rather than from the alternate way of taking the product of

matrices in (3), since representing each matrix requires eight

real numbers.

IV. APPROXIMATE SOLUTION

A method of evaluating an approximate solution of the

system of equations (9) under suitable assumptions regard-

ing the lengths and the characteristic impedances is outlined

in this section.

Using the series expansions for cosh (sl/v) and tanh (sl/v),

the transmission matrices (1) and (2) for a connecting line

and an open stub can be written in the forms

and

r 1

1 SL

[1 (16)
01”

Similarly if the open stub satisfies these conditions:

2-+0,

l/v + o,
(17)

and

l~v
—+C,

i?

the matrix (14) in the limit becomes

[1
10

Csl”
(18)

Therefore, in Fig. 3, if all the connecting lines satisfy condi-

tions similar to (15), i.e.,

1,//~\ -+ (), (19)
and

(1 ~a ,y

% ; s+---+””” )1
1’ ,s’

1+—;!+.
v?

q

1
“! (13)

1111-(
13 @

_s —__+...

)1

1“
ZV @ 3

(14)
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Fig. 4. Approximate lumped equivalent of the distributed network in
Fig. 3 under the assumptions (19) and (20).

“’’m”=’
Fig. 5. A nine-element transmission line network.

‘2’2-“”
Fig. 6. The lumped network having ninth-order Butterwol th trans-

mission poles. The element valuesare given in column 1 of Table I.

and all the open stubs satisfy conditions similar to (17), i.e.,

z, +0,

and

lJU + o,

lj/U
- = Cj, j=l,3,5, . . .

Zj

fzo)

the general circuit matrix for the lossless portion of the dis-

tributed structure in Fig. 3 becomes

The matrix (21) is realized as the lossless part of the lumped

network in Fig. 4. Assuming that all the connecting lines
have very high characteristic impedances, all the shunt stubs

have very low characteristic impedances, and all the line

lengths are electrically short, the distributed network in Fig.

3 can be approximately represented by the lumped network

in Fig. 4. It follows that the poles of this lumped network

are very close to the dominant transmission poles of the

distributed structure.

To obtain an approximate solution of the system of equa-

tions (9), the lumped network in Fig. 4 is first synthesized for

the prescribed set of transmission poles. With the values of

inductances and capacitances thus determined, the lengths

of the transmission line in Fig. 3 are found from the relations

lj/V = 5, j = 2,4,6,... (22)
Zj

lj/v = cj2j, j=l,3,5, . . (23)

using arbitrarily chosen high values of characteristic imped-

ances for connecting lines and low values of characteristic

impedances for the stubs. For the examples that were worked

out by the writers the values of 10 for the impedances of the

connecting lines and 0.1 for the impedances of the stubs,

TABLE I

Approximate Solution Refined
Solution by Newton–

from (22) and (23) Raphson Method

C,=3.0223 Zl= 0.1 [,/V =0. 30223 0.3536814
L,= O.9579 Zz=lo. o 1,/v =o.09579 0.09084188
C,= 3.7426 Za= 0.1 &/V =0. 37426 0.3598843
L,=O .8565 Z4=10. O [,/V =0. 08565 0.08299981
C5=2 .9734 Zs= 0.1 [,/V =0. 29734 0.2877055
L,= 0.6046 z~=lo. o 1,/V = 0.06046 0.05878263
CT= 1.7846 Z7= 0.1 @i =0. 17846 0.1730608
L, =0. 2735 Z*=lO. O f@ =0. 02735 0.0265765
C, =0 .3685 Z.3= 0.1 1,/v =O.03685 0.03653245

The capacitances and the inductances are given, respectively, in
farads and henrys. Characteristic impedances are in ohms and delays
I/v are in seconds.

were used in determining the lengths of the lines. This gave

a good approximate solution of the system of equations (9)

when the terminations were of the order of unity.

As an example, consider the 9-element distributed struc-

ture in Fig. 5, It is required to find the approximate values

of the lengths and the characteristic impedances [i.e., the

approximate solution of the system (9)] that realizes the

ninth-order Butterworth poles as the dominent transmission

poles of this structure. The lumped network that has these

prescribed transmission poles (and all the transmission zeros

at infinity) is shown in Fig. 6,

The element values of the distributed network found by

using (22) and (23) and the values of the inductances and

capacitances for the lumped network are given in Table 1,

V. REFINEMENT OF THE SOLUTION BY

NEWTON-RAPHSON METHOD

Once an approximate solution is obtained, this can be

refined to any desired degree of accuracy by the Newton-

Raphson [6] technique. Observe that the system of equations

(9) consists of n equations but possesses 212degrees of free-

dom. Therefore this system can be solved for any n of these
2n variables (n line lengths and n characteristic impedances),

the remaining n variables being assigned arbitrary values.

For example, if the characteristic impedances are picked

arbitrarily, the system (9) is solved for the lengths of the

lines. Thus system (9) reduces to

j,(l,j . . . . Q = o, i=l,’j. ... n. (M)

This can be solved by the Netwon-Raphson method starting

with approximate solution obtained by the procedure out-

lined in Section IV. The result of applying this iteration

method to the approximate solution of the 9-element dis-

tributed network in Fig. 5 is given in column 4 of Table I.

VI. REALIZATION OF CHARACTERISTIC IMPEDANCES

WITHIN A PRESCRIBEDBOUND

In the initial solution of the system of equations (9) out-

lined in Section V, the characteristic impedances of the con-

necting lines are impractically high and the characteristic

impedances of the stubs are impractically low. However, this
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Fig. 7. Variation of line lengths necessaryto maintain Butterworth poles (n= 9) as the ratio of zOOm.,O,,,

diiliculty can be overcome. The characteristic impedances of

the connecting lines can be gradually lowered and the charac-

teristic impedances of the stubs can be gradually increased,

and each time a change in the impedance (or impedances, in

case more than one impedance is changed simultaneously) is

made, the system (9) is solved again to find new values of

lengths of the line elements, thus preserving the prescribed

dominant poles. The iteration for this new solution is initi-

ated with the old solution as the starting point. The variation

of line lengths necessary to maintain the prescribed Butter-

worth poles for the 9-element filter as the ratio of charac-

teristic impedance of connecting lines to that of the stubs

was decreased is graphically presented in Fig. 7.

Decreasing the ratio z..~..ct~.~ li.~S/zStUb,reSUlts, in general,

in an increase of the line lengths. When all the connecting

lines have characteristic impedances of 3.5 ohms and all the

stubs have characteristic impedances of 0.3 ohms, the line

lengths that realize the Butterworth transmission poles were

found to be

n/U = 1.933716 second le/u = 0.1454346 second

lJv = 0.1635795 second lJv = 0.4402347 second

1,/v = 0.8731836 second LJv = 0.06485635 second (25)

lJv = 0.204529 second LJv = 0.1061295 second.

lJv = 0.7253457 second

The computer program written for changing the charac-

teristic impedances has the capability of automatically

bringing down the ratio zwnn.ctin~ line/zStUbwhile finding the

lengths of the transmission lines needed to maintain the

transmission poles at the prescribed positions. A typical run
is initiated by specifying the prescribed poles, the approx-

imate solution, and that the line lengths are to be varied.

This program has been successfully applied to distributed

structures having 2, 3, 5 and 9 elements when the transmis-

sion poles were prescribed to be the Butterworth poles. In
each of these cases, impedances of the connecting lines were

each decreased from 10 to 3.333 ohms and the impedances

595

,g lines to .%ub is reduced.

of the stubs were each increased from 0.1 to 0.3 ohms auto-

matically.

Although the distributed networks obtained through the

above procedure realize the prescribed set of dc~minant trans-

mission poles, the increased lengths of the lhne elements,

which accompany the decreased impedance ratio, produce

additional effects. The finite lengths of the stubs produce

transmission zeros at frequencies for which the line lengths

are odd multiples of one-quarter wavelength. Thus a shunt

stub of length 1 produces transmission zeros at frequencies

ik’r/2
—— k=l,3,5, ””’.

‘h – l/u
(26)

Such transmission zeros can be used to improve stop-band

attenuation, However, to preserve the passband attenuation

characteristic in the presence of transmission zeros, the

dominant transmission poles must be moved to new loca-

tions.

Consider, as an example, the 9-element filter in Fig. 5 with

the element values (25). If it is assumed that only the first

transmission zeros produced by each of the stubs 1, 3, 5,

and 7 are significant, 8 finite transmission zeros must be con-

sidered. For example, by the application of the theory of

inverse Chebyshev [7] filters, it is found that for the pass-

band response to be maximally flat, pole locations should be

shifted from the Butterworth locations to

~,,, = – 0.112954 + j 1.002686

sa,l = – 0.37495 i j 1.016385

S,,, = – 0.749856 t j 0.984713 (27)

s,,, = – 1.257454 + .i 0.716270

S, = – 1.565015 ~ j O,

and eight zeros should be placed at

+ j 1.320055, * j 1.501110,
(28)

+ j 2.022441, f j 3.800946.
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In this design the transmission zeros are placed to produce

equiripple response in the stop band. It should be noted

that because of nondominant transmission poles and zeros of

the distributed system, which are not accounted for in this

lumped design, (27) represents approximations to the dom-

inant transmission pole locations desired in the distributed

design.

The lengths of the stubs required to produce the transmis-

sion zeros (28) are calculated to be 1.19, 1.047, 0.775, and

0.4135 second. To attain the desired transmission zeros

given by (28) the lengths of the stubs (l), (3), (5) and (7) were

gradually changed from their values 1.933716, 0.8731836,

0.7253457, 0.4402347, to respectively 1.19, 1.047, 0.775,

0.4135. While changing the lengths of these stubs, appro-

priate changes were made in the remaining variables

[nine characteristic impedances and the length of the foul-

connecting lines and the stub (9)] to preserve the Butterworth

poles. In the computer program written to achieve this, any

n of the 2n parameters defining the system can be kept fixed,

while the iteration is carried out on the remaining n param-
eters. In this particular example, while lengths of the stubs

were gradually changed to desired dimensions, iteration was

performed on z1, L, zS, L, z6, L, zT, &, and z~. The element
values that achieves the transmission zeros (28) and main-

tains the Butterworth transmission poles were found to be

1,/v = 1.19 seconds

lJu = 0.2196553 second

13/v = 1.047 seconds

1,/u = 0.1899826 second

1,/v = 0.775 second

~6jv = (). 1429601 second

1,/11 = 0.4135 second

lJv = 0.06693098 second

lg/v = 0.106 second

21 = 0.1930863 ohm

2’2 = 3.5 ohms

23 = 0.3901989 Ohm

24 = 3.5 ohms

25 = 0.3310432 ohm

26 = 3.5 ohms

Z7 = 0.2752242 ohm

~S = 3.5 ohms

zg = 0.2968349 ohm.

To realize the pole locations (27), the values of S1, S~, S5,

ST, SO in (9) were shifted from Butterworth positions to

desired positions in small steps. Every time a step toward the

desired poles is made, element values compatible with the

new poles are found by solving (9) anew. While this is ac-

complished, the lengths of the stubs responsible for the

desired transmission zeros are not allowed to change.

Finally, the element values that attain the following dom-

inant poles:

–0.116232 ~ j 1.001723

–0.381702 t j 1.008266

–0.750730 f j 0.966249

– 1.240295 +- j 0.696060

– 1.534504 * j 0.0.

and the transmission zeros (28) are

n/v = 1.19 seconds Z1 = 1.119369 ohms

lJu = 0.250467 second 22 = 3.931361 ohms

1,/0 = 1.047 seconds .23= 0.3983251 ohm

1,/v = 0.1863467 second Z1 = 3.643610 ohms

16/. = 0.775 second Z5 = 0-3439001 ohm

&/v = 0.1320657 second ~G= 3.587569 ohms

17/v = 0.4135 second a = 0.2936443 ohm

lS/v = 0.06099037 second .% = 3.564882 ohms

1,/V = 0.106 second zg = 0.3144931 ohm.

The attenuation characteristic of the network characterized

by the above element values is shown by the dashed curve in

Fig. 8.

The above example illustrates the design of a distributed

network from a lumped design that has eight finite transmis-

sion zeros and nine transmission poles. The distributed net-

work which was designed to have Butterworth poles as its
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Fig. 9. The synthesisprocedure outlined in
Sections IV, V, and VI, summarized.

dominant transmission poles was used as the starting point

and following the realization of transmission zeros, the

transmission poles were shifted from the Butterworth

locations to the desired locations. An alternate approach

would be to design the lumped network having the desired

transmission poles and all the zeros at infinity. Then, follow-

ing the procedure outlined earlier in this section and in Sec-

tions 111 and IV, a distributed network having the desired

transmission poles could be synthesized. The lengths of the

stubs would then be adjusted for prescribed transmission

zeros. The block-diagram in Fig. 9 summarizes the synthesis

procedure outlined in Sections IV, V, and VI.

The transmission delay cussed by the connecting lines

combined with the repetitive nature of the transmission zeros

produced by the shunt stubs produces transmission poles in

addition to the dominant poles which are being controlled.

The dip in the attenuation near w= 3.25 rad/s is caused by

such a nondominant pole. It is sometimes possible to ap-

proximately nullify the undesirable effect of a nondominant

pole by placing opposite it a transmission zero on the real

frequency axis. A general strategy for accomplishing this

can be formulated as a nonlinear programming problem.
This nonlinear programming problem may then be approx-

imately solved by successive linearization, the linear prob-

lem thus obtained at each step being solved by simplex algo-

rithm. For this particular example, it is observed that stub

(l), in addition to creating a desired transmission zero at

j 1,32, places a transmission zero at j 3,96. This latter zero

is very close to the desired transmission zero at j 3.800 pro-

duced by stub (7). The stub (7) can, therefore, be utilized

elsewhere. When the length of the stub (7) was adjusted to

place a transmission zero at j 3.25, the changed element

values were found to be

1,/v = 1.19 seconds Z1 = 0.9373091 ohm

iJv = 0.250467 second .zZ= 3.609804 ohms

l.s/v = 1.047 seconds 23 = 0.4040Z85 ohm

14/v = 0.1863467 second Z4 = 3.5449;72 ohms

1,/u = 0.775 second .25= 0.3478956 ohm

1,/L = 0.1320657 second .?6= 3.51709 ohms

b/v = 0.4835 second z? = 0.3755778 ohm

ltJv = 0.1 second 28 = 1.976803 ohms

&/v = 0.106 second zg = 0.3387325 ohm.

The attenuation of the filter after this adjustment is shown

by the solid curve in Fig. 8. This filter was constructed in

strip lines and the measured attenuation is indicated by

crosses in Fig. 8.

VII. CONCLUSION

An iterative dominant-pole synthesis technique for trans-

mission line networks has been presented. It has been dem-

onstrated that synthesis can be performed iteratively with

each step in the iteration involving the solution of a system

of nonlinear equations. The element values are continuously

changed to achieve specified poles and zeros which in turn

are perturbed until they meet the prescribed network charac-

teristics. This design procedure can take into account trans-

mission zeros near the passband. Extra degrees of freedom in

the design equations, and the fact that a speciiied number of

transmission zeros are not uniquely synthesized by an equal

number of stubs, result in a nonunique distributed network

for a prescribed set of dominant transmission poles and

zeros. Thus a variety of optimization possibilities are left

open to the circuit designer.
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