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Dominant Pole Synthesis of Transmission
Line Networks

SOLAIMANUL MAHDI, STUDENT MEMBER, IEEE, AND ALAN B. MACNEE, FELLOW, IEEE

Abstract—This paper describes a procedure for synthesizing trans-
mission networks which are interconnections of uniform line elements. An
iterative, digital computer algorithm is developed which achieves a dom-
inant pole synthesis. The line lengths and the characteristic impedances
are controlled individually, which gives design fiexibility not found in syn-
thesis procedures based on Richards’ transformation. Thus, the charac-
teristic impedances may be restricted by upper and lower bounds when
there is no restriction on the line lengths. The procedure is detailed for a
TEM mode structure of alternating open stubs and connecting lines. The
method uses a Newton-Raphson iterative scheme to adjust the charac-
teristic impedances and lengths of the transmission lines for a prescribed
set of dominant transmission poles. By controlling the stub line lengths
and the dominant pole positions, the principal transmission zeros and
bounded characteristic impedances can be achieved simultancously.

1. INTRODUCTION

ETWORK functions that characterize a lossless
! \* transmission line section can be expressed in terms
of a single function tanh (s/4f,), where s=o+jw is
the complex frequency, and fj is the frequency, in hertz, at
which the length of the transmission line element is a quar-
ter wavelength. Using the transformation A=2--jQ=tanh
(s/4f0) Richards [1] showed that distributed circuits com-
posed of lumped resistors and equal length transmission line
clements can be treated exactly as lumped networks in the
new variable A. Thus all the power of conventional lumped
parameter synthesis techniques is made available to the de-
signers of distributed parameter networks.

Richards’ transformation has been successfully employed
for the analytical design of distributed networks by Ozaki
and Ishii [2], Horton and Wenzel [3], Wenzel [4], and many
others. While this transformation has been a powerful tool
for the analytic design of distributed structures, techniques
based on it have certain weaknesses. Foremost among these
is the requirement that all the transmission line elements
have the same electrical length., One-half of the available
degrees of freedom are being fixed for analytic convenience,
and all of the design control rests in the characteristic im-
pedances of the transmission line elements. This can lead to
practical difficulty since the range of feasible characteristic
impedance is much less than the element value range avail-
able with lumped inductances and capacitances.
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Fig. 1. General structure of the transmission line networks considered
in this paper. The length /; and the characteristic impedance z;
characterize the jth transmission line.

A microwave network structure with no restriction on line
lengths has been considered by Kinariwala [5]. He has de-
rived necessary and sufficient condition for a multivariable
function to be the input impedance of a circuit made up of
sections of unequal length transmission lines in cascade and
terminated in a lumped resistor. He also gives a procedure
for the synthesis of such a cascaded structure from an input
impedance satisfying the given conditions. The approxima-~
tion problem for such a cascade network is still unsolved, as
are the synthesis and approximation methods for a more
general structure.

Although analytic design methods for distributed net-
works without the a priori restriction of commensurable line
lengths are yet to be found, the high-speed computational
capability of a large digital computer makes feasible the
iterative design of such structures.

This paper describes a dominant pole synthesis procedure
applicable to a distributed TEM mode network having the
physical structure indicated in Fig. 1; in this procedure the
lower and upper bounds of the characteristic impedances are
specified, but there is no restriction on line lengths. The
method utilizes a Newton-Raphson iterative scheme to ad-
just the characteristic impedances and lengths of the trans-
mission lines for a prescribed set of dominant transmission
poles. If the poles are chosen to give a low-pass characteristic
when all of the transmission zeros are at infinity, the finite
transmission zeros produced by the stubs in Fig. 1 may sub-
stantially modify the transfer characteristic realized. By
controlling the stub line lengths and modifying the dominant
pole positions, improved transmission characteristics and
bounded characteristic impedances can be achieved simul-
taneously.

II. THE ANALYTIC PROBLEM

The characteristic impedances and the lengths of the
transmission line elements that realize a prescribed set of
transmission poles are the solution of a system of nonlinear
equations. In this section, this system of nonlinear equations
is derived.
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The general circuit parameter matrices of a connecting

line element and an open stub element are respectively given
by

8 o8l
cosh —  zsinh —
’ ’ W
1 .. sl st |
— sinh — cosh —
z v v
and
sl
1 0 cosh — 0
' ' @)
1 sl B sl 1 sl sl |
—tanh — 1 cosh — | —sinh— cosh —
z v v Lz v v

In matrices (1) and (2), /, z, and v denote, respectively, the
transmission line length, the characteristic impedance, and
the velocity of propagation. The general circuit parameter
matrix for the whole circuit in Fig. 1 is the product of indi-
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Re [CT/(ZI, s *y %n; E)] =0 (5)
Im [Cr'(ly, - - - v B)] = (6)

If £ is real, Cy’ is real, and in that case (4) is a real equation.
A complex pole and its conjugate result in two equations,
and a real pole results in one equation. Realization of n

')ln;zly.'

,ln;zl’...

transmission poles at prescribed locations s;, i=1,2, - - -, n
requires that
CT/(llv Tt lﬂ) 21, 0, 2ay 82) = O}
. O
1=1,2,++,n

Following the procedure outlined above the system of equa-
tions (7) may be written in the form

fi(ll; ot ’ 2n) = 0; ty N (8)

The functions f; are the real and imaginary parts of Cy’ at
the complex poles and Cy’ itself at the real poles. Assuming
that the prescribed set of  pole locations are given by

s, e i=1,--

o k. ok .
Sy, §g = 817 S3, 84 = 837, -+ -}

— & s,
vidual matrices representing each circuit element, which may S St = Suma”s - Sa(real),
be written (8) can be explicitly expressed as
( sy slp_1 o Sl sla sly
1 0 \ - cosh— 0 cosh zsinh cosh—  zsinh —
1 v v v v v
j sty 1 sl sl 1 Sy Sla1 1 sl sl,
Gy 1 || cosh— | — sinh — cosh — — sinh cosh — sinh —  cosh —
{ v 2 v v ALz v v 2 v v
3
[ Sll
cosh — 0 1 0 AT BT AT, BT,
| 1 v " [ <sll>]
e = = sech { —
Sll 1 Sll Sll i=1,8, - v
cosh— | — sinh — cosh— Gy 1 Cr Dr Cs" Dy
| v z v v )
Since the transfer impedance is given by fi=Re[Cr'(y, - - -, ln; 21, 225 80] =0
n Sl f’ = Im [CTI(lll . 3 Zn) 21, * ) %y 81)] =0
) II |:cosh < \ >} fs = Re [Cr/ Ty, - - -, I} 21, , 23 83)] =0
i=1,3, -
213 = CTT = o ) fi=Im [Cr' (ly, - , by 21, 2 83)] =0 ©
L. , . .
tra,r1§m1ss1on poles are the zeros ot." Cy'. To emphasize that faco = Re[Co/(ls, + -, Ly 2y« + + ) 2a; Suce)] = O
Cy' is a function of lengths of the line elements, (I}, I, - -+, ,
I.), the characteristic impedances of the line elements, for = Tm [C/ (b, -y lasey -y ani e = O
(z1, 22, - - -, Za), and the complex frequency s, it can be fa=Co'{y, -+« , lu; 21, - -+, 2a; Su) = O.
written as

OT,(ll) T, ln! 21, ", Zas 8)-

If £ (and its conjugate) is a complex transmission pole of the
network in Fig. 1, one gets
Co'(ly, - - - <y 20 8) = 0. )

’lﬂ;zly t

C,’ being a complex-valued function, (4) can be separated
into two real equations:

II1. CALCULATION OF REAL AND IMAGINARY
PARrTS oF Cr'

C7’ may be calculated by multiplying the component ma-
trices in (3). Another way of finding Cy is calculating the
input impedance at the port 1-1’ in Fig. 3, since z;, = A’/ Cy’.
Evaluation of z;, proceeds in the following way.

The input impedance of a transmission line terminated in
an impedance (E+-jF)/(G+-jH) as indicated in Fig. 2(a), can
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Fig. 2. (a) A transmission line terminated by the impedance z/~
=(E-+jF)/(G+jH). (b) An impedance ziy=(E-+jF)/(G+jH)
shunted by an open stub.

be manipulated into the form

(E+JF) cosh (sl;/v)+(G+jH)z; sinh (sl; /v)
(G-}—jH)z, cosh (sl,/v) + (E+jF) sinh (sl,/v)

Zin’=

(10)

The input impedance of a one port shunted by an open
stub as depicted in Fig. 2(b) is found to be

(E+jF)z; cosh (sl,/v)
(G+jH)z, cosh (sl;/v)+(E4-5F) sinh (sl,/v)
Starting with E=1/G,, F=0, G=1, H=0, zi,}, zi.%, - - -,
zin® are computed recursively by using whichever of the

expressions (10) or (11) is applicable as shown in Fig. 3.
Finally z;, is given by

Zin’ =

11

1
Go+ (/2w

Evaluation of Cy’ by first finding z;, from (12) involves
determination of zi.'(j=1, 2, - - -, n) using either (10) or
(11). Each of these z;,7 is expressed by four real numbers. In
the computer program that was written to solve the system
of equations (9), Cy” was found from the denominator of z;,
rather than from the alternate way of taking the product of
matrices in (3), since representing each matrix requires eight
real numbers.

Zin = (12)

IV. APPROXIMATE SOLUTION

A method of evaluating an approximate solution of the
system of equations (9) under suitable assumptions regard-
ing the lengths and the characteristic impedances is outlined
in this section.

Using the series expansions for cosh (s//v) and tanh (sl/v),
the transmission matrices (1) and (2) for a connecting line
and an open stub can be written in the forms

)

and
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| n-l

Fig. 3. Input impedance z,, looking into the port 1—1’ is determined
recursively. Computation starts at G, then proceeds towards the
left as z2(j=1, 2,. .., n) are found using (10) or (11), until port
1—1’is reached.

If for the connecting line it is assumed that

g —> o0,

/v —0, (15)

and

/v — L,

the matrix (13) in the finite frequency-plane approaches the
limiting value
[1 SL—J
o 11

Similarly if the open stub satisfies these conditions:

(16)

z—>0,

/v —0, an

and

l
e
K4

the matrix (14) in the limit becomes

L.

Cs
Therefore, in Fig. 3, if all the connecting lines satisfy condi-
tions similar to (13), i.e.,

(18)

2> ®,
I,/v —0, (19)
and
ZJZ]/U = Lf; J =2, 4’ 6,
(l n R >1
zl—s+— — .
3 91
v v3 3! ’ (13)
? s
b v 5'+ .
0
(14)
> )
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Fig. 4. Approximate lumped equivalent of the distributed network in
Fig. 3 under the assumptions (19) and (20).

Fig. 5. A nine-element transmission line network.

Fig. 6. The lumped network having ninth-order Butterworth trans-
mission poles. The element values are given in column 1 of Table I.

and all the open stubs satisfy conditions similar to (17), i.e.,

ZJ_>O)

lj/v - O:
and
20
" (20)

—Ci; j=173;57"'

)
the general circuit matrix for the lossless portion of the dis-
tributed structure in Fig. 3 becomes

[1 0][1 Ln_ls:l [1 Lsz[1 o]
C.s 1410 1 0 11LCs 1t

The matrix (21) is realized as the lossless part of the lumped
network in Fig. 4. Assuming that all the connecting lines
have very high characteristic impedances, all the shunt stubs
have very low characteristic impedances, and all the line
lengths are electrically short, the distributed network in Fig.
3 can be approximately represented by the lumped network
in Fig. 4. It follows that the poles of this lumped network
are very close to the dominant transmission poles of the
distributed structure.

To obtain an approximate solution of the system of equa-
tions (9), the lumped network in Fig. 4 is first synthesized for
the prescribed set of transmission poles. With the values of
inductances and capacitances thus determined, the lengths
of the transmission line in Fig. 3 are found from the relations

21

Lf .

lj/v:_" ]:2;4)6)"' (22)
25

l]'/v = CJ'ZJ'; .7 = 1: 3; 5) T (23)

using arbitrarily chosen high values of characteristic imped-
ances for connecting lines and low values of characteristic
impedances for the stubs. For the examples that were worked
out by the writers the values of 10 for the impedances of the
connecting lines and 0.1 for the impedances of the stubs
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TABLE I
Approximate Solution Refined
Solution by Newton—-
from (22) and (23) Raphson Method
C,=3.0223 z1= 0.1 1,/v=0.30223 0.3536814
L,=0.9579 29=10.0 l/v=0.09579 0.09084188
C3=3.7426 zz= 0.1 I;/v=0.37426 0.3598843
L;=0.8565 z,=10.0 Iy/v=0.08565 0.08299981
Cs=2.9734 zz= 0.1 Is/v=0.29734 0.2877055
Ls=0.6046 2=10.0 Is/v=0.06046 0.05878263
Cr=1.7846 ze= 0.1 I;/v=0.17846 0.1730608
Ls=0.2735 23=10.0 l3/v=0.02735 0.0265765
Cy=0.3685 ze= 0.1 l3/v=0.03685 0.03653245

The capacitances and the inductances are given, respectively, in
farads and henrys. Characteristic impedances are in ohms and delays
I/v are in seconds.

were used in determining the lengths of the lines. This gave
a good approximate solution of the system of equations (9)
when the terminations were of the order of unity.

As an example, consider the 9-element distributed struc-
ture in Fig. 5. It is required to find the approximate values
of the lengths and the characteristic impedances [i.e., the
approximate solution of the system (9)] that realizes the
ninth-order Butterworth poles as the dominent transmission
poles of this structure. The lumped network that has these
prescribed transmission poles (and all the transmission zeros
at infinity) is shown in Fig. 6.

The clement values of the distributed network found by
using (22) and (23) and the values of the inductances and
capacitances for the lumped network are given in Table 1.

V. REFINEMENT OF THE SOLUTION BY
NEWTON-RAPHSON METHOD

Once an approximate solution is obtained, this can be
refined to any desired degree of accuracy by the Newton-
Raphson [6] technique. Observe that the system of equations
(9) consists of n equations but possesses 21 degrees of free-
dom. Therefore this system can be solved for any n of these
2n variables (» line lengths and # characteristic impedances),
the remaining » variables being assigned arbitrary values.
For example, if the characteristic impedances are picked
arbitrarily, the system (9) is solved for the lengths of the
lines. Thus system (9) reduces to

fi(lli e

This can be solved by the Netwon-Raphson method starting
with approximate solution obtained by the procedure out-
lined in Section IV. The result of applying this iteration
method to the approximate solution of the 9-element dis-
tributed network in Fig. 5 is given in column 4 of Table I.

) =0, 1=1,2, - n (24)

VI. REALIZATION OF CHARACTERISTIC IMPEDANCES
WITHIN A PRESCRIBED BOUND

In the initial solution of the system of equations (9) out-
lined in Section V, the characteristic impedances of the con-
necting lines are impractically high and the characteristic
impedances of the stubs are impractically low. However, this
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Fig. 7. Variation of line lengths necessary to maintain Butterworth poles (#=9) as the ratio of Zeennecting 1ives t0 Zstub is reduced.

difficulty can be overcome. The characteristic impedances of
the connecting lines can be gradually lowered and the charac-
teristic impedances of the stubs can be gradually increased,
and each time a change in the impedance (or impedances, in
case more than one impedance is changed simultaneously) is
made, the system (9) is solved again to find new values of
lengths of the line elements, thus preserving the prescribed
dominant poles. The iteration for this new solution is initi-
ated with the old solution as the starting point. The variation
of line lengths necessary to maintain the prescribed Butter-
worth poles for the 9-element filter as the ratio of charac-
teristic impedance of connecting lines to that of the stubs
was decreased is graphically presented in Fig. 7.

Decreasing the ratio Zeonnecting 1ines/ Zstubs T€SULLS, in general,
in an increase of the line lengths. When all the connecting
lines have characteristic impedances of 3.5 ohms and all the
stubs have characteristic impedances of 0.3 ohms, the line
lengths that realize the Butterworth transmission poles were
found to be

Ii/v = 1.933716 second
l;/v = 0.1635795 second
ls/v = 0.8731836 second
ly/v = 0.204529 second
I;/v = 0.7253457 second

le/v = 0.1454346 second
I;/v = 04402347 second
ls/v = 0.06485635 second
Is/v = 0.1061295 second.

(25)

The computer program written for changing the charac-
teristic impedances has the capability of automatically
bringing down the ratio Zeonnecting line/ Zstub While finding the
lengths of the transmission lines needed to maintain the
transmission poles at the prescribed positions. A typical run
is initiated by specifying the prescribed poles, the approx-
imate solution, and that the line lengths are to be varied.

This program has been successfully applied to distributed
structures having 2, 3, 5 and 9 elements when the transmis-
sion poles were prescribed to be the Butterworth poles. In
each of these cases, impedances of the connecting lines were
each decreased from 10 to 3.333 ohms and the impedances

of the stubs were each increased from 0.1 to 0.3 ohms auto-
matically.

Although the distributed networks obtained through the
above procedure realize the prescribed set of dominant trans-
mission poles, the increased lengths of the line elements,
which accompany the decreased impedance ratio, produce
additional effects. The finite lengths of the stubs produce
transmission zeros at frequencies for which the line lengths
are odd multiples of one-quarter wavelength. Thus a shunt
stub of length / produces transmission zeros at frequencies

kr/2

/v

(26)

k=135 --.

W ==

Such transmission zeros can be used to improve stop-band
attenuation. However, to preserve the passband attenuation
characteristic in the presence of transmission zeros, the
dominant transmission poles must be moved to new loca-
tions.

Consider, as an example, the 9-element filter in Fig. 5 with
the element values (25). If it is assumed that only the first
transmission zeros produced by each of the stubs 1, 3, 5,
and 7 are significant, 8 finite transmission zeros must be con-
sidered. For example, by the application of the theory of
inverse Chebyshev [7] filters, it is found that for the pass-
band response to be maximally flat, pole locations should be
shifted from the Butterworth locations to

Si2 = — 0.112954 £ j 1.002688
83,4 = — 0.37495 £ 7 1.016385
S5, = — 0.749856 + j 0.984713 27
Szs = — 1.257454 + 7 0.716270
Sy = — 1.565015 = j 0,
and eight zeros should be placed at
+ j 1.320055, + 7 1.501110, @8)

+ 7 2.022441, + j 3.800946.



596

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1969

(
\
!
80 \ I
Vol
70 RN
AN
\ i ~
60 . Vi
i\l
3 x 134 l
2 Sof- ALY ,
3 NN |
x
£ 401 A e
g <N
2y
« Measured data
Y% (1= 145 MH2)
20 __ __ Initial iterated
design
Modified design
(o]
Y L [l i
0 | 2 4 5

Frequency in rodions per second

Fig. 8. Calculated and measured attenuation characteristics of nine-element stripline filter,

In this design the transmission zeros are placed to produce
equiripple response in the stop band. It should be noted
that because of nondominant transmission poles and zeros of
the distributed system, which are not accounted for in this
lumped design, (27) represents approximations to the dom-
inant transmission pole locations desired in the distributed
design.

The lengths of the stubs required to produce the transmis-
sion zeros (28) are calculated to be 1.19, 1.047, 0.775, and
0.4135 second. To attain the desired transmission zeros
given by (28) the lengths of the stubs (1), (3), (5) and (7) were
gradually changed from their values 1.933716, 0.8731836,
0.7253457, 0.4402347, to respectively 1.19, 1.047, 0.775,
0.4135. While changing the lengths of these stubs, appro-
priate changes were made in the remaining variables
[nine characteristic impedances and the length of the four
connecting lines and the stub (9)] to preserve the Butterworth
poles. In the computer program written to achieve this, any
n of the 2n parameters defining the system can be kept fixed,
while the iteration is carried out on the remaining » param-
eters. In this particular example, while lengths of the stubs
were gradually changed to desired dimensions, iteration was
performed on zi, b, zs, I, zs, ks, 27, Is, and z,. The element
values that achieves the transmission zeros (28) and main-
tains the Butterworth transmission poles were found to be

lLi/v = 1.19 seconds z; = 0.1930863 ohm
ls/v = 0.2196553 second 2, = 3.5 ohms
l;/v = 1.047 seconds 23 = 0.3901989 ohm
{s/v = 0.1899826 second z, = 3.5 chms
Is/v = 0.775 second z; = 0.3310432 ohm
lg/v = 0.1429601 second 25 = 3.5 ohms
l;/v = 0.4135 second 27 = 0.2752242 ohm
Is/v = 0.06693098 second 25 = 3.5 ohms
ly/v = 0.106 second 2z = 0.2968349 ohm.

To realize the pole locations (27), the values of Sy, Ss, S,
S7, Se in (9) were shifted from Butterworth positions to
desired positions in small steps. Every time a step toward the
desired poles is made, element values compatible with the
new poles are found by solving (9) anew. While this is ac-
complished, the lengths of the stubs responsible for the
desired transmission zeros are not allowed to change.
Finally, the element values that attain the following dom-
inant poles:

—0.116232 + j 1.001723
—0.381702 + j 1.008266
—0.750730 + 7 0.966249
—1.240295 + j 0.696060
—1.534504 + j 0.0.

and the transmission zeros (28) are

L/v = 1.19 seconds  2z; = 1.119369 ohms
ly/v = 0.250467 second 23 = 3.931361 ohms
ls/v = 1.047 seconds 23 = 0.3983251 ohm
ly/v = 0.1863467 second zy = 3.643610 ohms
ly/v = 0.775 second zy = 0.3439001 ohm
le/v = 0.1320657 second 2¢ = 3.587569 ohms
l;/v = 0.4135 second z7 = 0.2936443 ohm

Is/v = 0.06099037 second 2s = 3.564882 ohms

lo/v = 0.106 second 29 = 0.3144931 ohm.

The attenuation characteristic of the network characterized
by the above element values is shown by the dashed curve in
Fig. 8.

The above example illustrates the design of a distributed
network from a lumped design that has eight finite transmis-
sion zeros and nine transmission poles. The distributed net-
work which was designed to have Butterworth poles as its
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Specified
n, poles, z2eros, and
bound on the characteristic
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Realize the lumped protfotype
with alf the transmission zeros
at o,

Find approximate solution of
the system of equations (9).
Refine this solution by the
Newton — Raphson iteration with
n hne lengths as variables

Soluhon of the system of
equations (9} by the
Newton - Raphson iteration.
Of the 2n parameters
in the system, any n
can be specified os
iterahion vanables.

Change the characteristic impedances
in steps, bringing them within the
bound. Execute Newton — Raphson
fteration on n hne lengths to
preserve the poles,

Determine desired lengths of the
stubs. Adjust the tengths of the
stubs to give specified zeros.
Modfy any n of the remaining
parameters by the Newton - Raphson
iteration to maintain the poles.

Fig. 9. The synthesis procedure outlined in
Sections 1V, V, and VI, summarized.

dominant transmission poles was used as the starting point
and following the realization of transmission zeros, the
transmission poles were shifted from the Butterworth
locations to the desired locations. An alternate approach
would be to design the lumped network having the desired
transmission poles and all the zeros at infinity. Then, follow-
ing the procedure outlined earlier in this section and in Sec-
tions IIT and IV, a distributed network having the desired
transmission poles could be synthesized. The lengths of the
stubs would then be adjusted for prescribed transmission
zeros. The block-diagram in Fig. 9 summarizes the synthesis
procedure outlined in Sections 1V, V, and VL.

The transmission delay cuased by the connecting lines
combined with the repetitive nature of the transmission zeros
produced by the shunt stubs produces transmission poles in
addition to the dominant poles which are being controlled.
The dip in the attenuation near w=3.25 rad/s is caused by
such a nondominant pole. It is sometimes possible to ap-
proximately nullify the undesirable effect of a nondominant
pole by placing opposite it a transmission zero on the real
frequency axis. A general strategy for accomplishing this
can be formulated as a nonlinear programming problem.
This nonlinear programming problem may then be approx-
imately solved by successive linearization, the linear prob-
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lem thus obtained at each step being solved by simplex algo-
rithm. For this particular example, it is observed that stub
(1), in addition to creating a desired transmission zero at
J 1.32, places a transmission zero at j 3.96. This latter zero
is very close to the desired transmission zero at j 3.800 pro-
duced by stub (7). The stub (7) can, therefore, be utilized
elsewhere. When the length of the stub (7) was adjusted to
place a transmission zero at j3.25, the changed element
values were found to be

li/v =1.19 seconds z; = 0.9373091 ohm
l./v = 0.250467 second 29 = 3.609804 ohms
Ii/v = 1.047 seconds 23 = 0.4040285 ohm
l,/v = 0.1863467 second 24 = 3.544972 ohms
I;/v =0.775 second 25 = 0.3478956 ohm
ls/v = 0.1320657 second 26 = 3.51709
I;/v = 0.4835
ls/v = 0.1
lo/v = 0.106

ohms
second 2; = 0.3755778 ohm
1.976803 ohms
second 29 = 0.3387325 ohm.

second 23

The attenuation of the filter after this adjustment is shown
by the solid curve in Fig. 8. This filter was constructed in
strip lines and the measured attenuation is indicated by
crosses in Fig. 8.

VII. CoNcLUSsION

An iterative dominant-pole synthesis technique for trans-
mission line networks has been presented. It has been dem-
onstrated that synthesis can be performed iteratively with
each step in the iteration involving the solution of a system
of nonlinear equations. The element values are continuously
changed to achieve specified poles and zeros which in turn
are perturbed until they meet the prescribed network charac-
teristics. This design procedure can take into account trans-
mission zeros néar the passband. Extra degrees of freedom in
the design equations, and the fact that a specified number of
transmission zeros are not uniquely synthesized by an equal
number of stubs, result in a nonunique distributed network
for a prescribed set of dominant transmission poles and
zeros. Thus a variety of optimization possibilities are left
open to the circuit designer.
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